Three years monitoring of pesticides mitigation with an artificial wetland receiving agricultural drained flow at catchment scale

J. Tournebize*\(^1\), C. Chaumont\(^1\), F. Birmant\(^2\), Ü. Mander\(^1,3\)

1 Irstea, France
2 AQUI'Brie, France
3 University of Tartu, Estonia
Champigny Recharge Specificity

60% of the recharge is due to direct infiltration from surface water to groundwater (sinkholes).

One of the 42 sinkholes

→ Vulnerability from agricultural pollution
Propose and test a methodology on an example to be reproduced for the whole Champigny Hydrosystem

Selected Objective: PESTICIDES MITIGATIONS from Agricultural Land by
1) Reduction of 50% of total pesticide applied amount and secondly reduction Nitrate pollution
2) Support for Implementation of Artificial WETLANDS

Involvement of all the stakeholders:
• Water Agency: Water Framework Directive
• Local authority: Drinkable water to citizens at a lowest treatment as possible
• Farmers: Food production
• And Scientists: Improve knowledge and provide solutions, tools …
Objectives of the RAMPILLON project

PROTECT GROUNDWATER FROM PESTICIDE CONTAMINATION IN A TOTALLY DRAINED WATERSHED OF 400HA

After land reclamation, all buffering systems disappeared
Co-construction: a step by step process

When involving a group of farmers, the process takes a long time!!

Tournebize et al., 2012
Tested water flow interception strategies

2014-2015

In Stream
- Drained plots

Artificial wetland
- Shallow
- Limited max inlet \(Q \)
- Vegetated
- Remediation purpose

2012-2013

2013-2014

Off Stream

Drained plots

Buffer zone
- Shallow
- Vegetated
- Remediation use only

Drainage pipe or ditch

Hydraulic management
Main Artificial WETLAND
6300M² AND 2400M³ FOR 400HA (0.15% OF UPSTREAM WATERSHED, 6M³ PER DRAINED HA)

Outlet
With controlled leakage

Inlet Gate (opening / closing management)

Water depth: 1.3m

Water depth: max 0.5m

Water depth: 0.8m
Ecological trajectory: Vegetation (macrophytes)

Sedge (Carex) - Reed (Phragmites australis) – Cattail (Typha latifolia) – Bulrush (Juncus) – Algae

80% vegetation cover in 2012 – 20% vegetation cover in 2013 – 50% vegetation cover in 2015
Monitoring Strategy

Catchment OUTLET
- Continuous discharge monitoring (30min)
- Weekly Grab Sampling for pesticides and nitrate

AW OUTLET
- Outlet Flow Control
- Continuous discharge and nitrate concentration monitoring (30min)
- Weekly Grab Sampling for pesticides and nitrate

Ditch from 400ha catchment

Artificial WETLAND:
- Surface = 1ha (Ratio: 0.15%)
- Volume = 2400 m3
- Eddy tower

AW INLET
- Input Flow Control (OPEN /CLOSE Strategy)
- Raingauge
- Continuous discharge and nitrate concentration monitoring (30min)
- Weekly Grab Sampling for pesticides and nitrate

Coupling high frequency monitoring (Q, R, ET, SM, NO$_3$)
Weekly flow weighted sampling
Hydrological Results

Yearly Rainfall and Subsurface Drained Flow in mm (from October to September)

<table>
<thead>
<tr>
<th></th>
<th>2012/13 & 2013/14</th>
<th>2014/2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion Winter / Other seasons</td>
<td>85/15%</td>
<td>80/20%</td>
</tr>
<tr>
<td>Opening days of inlet gate</td>
<td>235 days</td>
<td>365 days</td>
</tr>
<tr>
<td>Intercepted volume</td>
<td>11%</td>
<td>67%</td>
</tr>
<tr>
<td>Water losses</td>
<td>4%</td>
<td>6%</td>
</tr>
<tr>
<td>Representativity of sampling strategy</td>
<td>80%</td>
<td>94%</td>
</tr>
</tbody>
</table>
Hydraulic Residential Time strongly depends on watershed hydrological response:
- short in winter (less than 1 day)
- longer during other seasons (between 2 and 100 days)
No decrease of pesticides application during the monitoring periods.
Pesticides results

76 molecules applied every year (1.71kg of active molecules per ha)

→ About 64 analysed (84%):
 → 27 non detected; 38 molecules detected > LQ
 → 6 non applied but detected such as atrazine

Annual dynamic of pesticides transfer following application
Pesticides exportation from drained area

In average, about 1.5g of exported pesticides per hectare, corresponding to less than 0.1% of applied amount at crop field in subsurface drainage context.

Distributed as more than 70% for herbicides (including some metabolites), and secondly fungicides.
Pesticides removal efficiency within the artificial wetland

Concentration
Reduction of peaks, and concentrations thank to the wetland (Sum<0.5µg/L)

Fluxes
-118g/year

Internal efficiency
35% in average

Global efficiency
22% in average

Depending on water interception strategy
Driven factors for pesticides removal efficiency?

HIGH VARIABILITY ACCORDING TO MOLECULES

Any clear evidence of efficiency depending on pesticides properties

Strong sorption, low DT50 seem to increase efficiency

BUT

Season (temperature), pH and HRT should also have a real influence
Pesticides removal efficiency ranking

<table>
<thead>
<tr>
<th>Inefficient</th>
<th>10 → 20%</th>
<th>20 → 40%</th>
<th>40 → 60%</th>
<th>60 → 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesotrione</td>
<td>Cyproconazole</td>
<td>Clopyralid</td>
<td>Clomazone</td>
<td>2,4-D</td>
</tr>
<tr>
<td>Imazamox</td>
<td>Imidaclopride</td>
<td>Bentazone</td>
<td>Aclonifen</td>
<td>Benoxacor</td>
</tr>
<tr>
<td>Chlortoluron</td>
<td>Atrazine déséthyl</td>
<td>Metamitrone</td>
<td>Dimethenamide</td>
<td>Chlorméquat</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>Mesosulfuron mtl</td>
<td>Chloridazon</td>
<td>Atrazine</td>
<td>Triflusulfuron mtl</td>
</tr>
<tr>
<td>Fluroxypyr</td>
<td>Isoproturon</td>
<td>Florasulam</td>
<td>S-metolachlor</td>
<td>Ethephon</td>
</tr>
<tr>
<td>2,4-MCPA</td>
<td>AMPA</td>
<td>Boscalid</td>
<td>Azoxystrobine</td>
<td>Napropamide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dimetachlore</td>
<td>Diflufenican</td>
<td>Tebuconazole</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nicosulfuron</td>
<td>Lenacile</td>
<td>Epoxyconazole</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propyzamide</td>
<td>Glyphosate</td>
<td>Pendimethaline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Propiconazole</td>
<td>Fluoxastrobine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quinmerac</td>
<td>Métazachlor</td>
</tr>
</tbody>
</table>

Should these results influencing farmers’ pesticides choices and practices?
Take Home Message

The 3 years monitoring of artificial wetland showed
1) High potentiel for Pesticides removal
2) High variability of removal efficiency according to pesticides
¡It is not a 100% warranty solution, important to accept variability
3) The crucial knwoledge of pollutant water dynamic upstream (hydrological diagnosis)
4) Water and Hydraulic residential time management influence deeply the removal efficiency: IN STREAM strategy should be recommended
5) Still question about pesticide accumulations and metabolites???

The monitoring provides a set of data, useful for designing the future artificial wetland according to the water quality objective
With the financial support of Agence de l’Eau Seine Normandie

Thank you for your attention