IN VIVO EFFECTS OF TWO CHLORDECONE DERIVATIVES, OBTAINED BY IN SITU CHEMICAL REDUCTION, IN A HUMAN PROSTATE MODEL

Pierre-André Billat GFP 2017

Introduction

- Chlordecone (CLD) POP
- Found in the edible roots and the water of French West Indies
- Association between the development of prostate cancer and CLD exposure (angiogenesis)
- In Situ Chemical Reduction (ISCR) possible way for the remediation of soils contaminated by CLD

Context

 Mono-hydroCLD (CLD-1CI) and tri-hydroCLD (CLD-3CI) have lower cytotoxicity and proangiogenic properties than CLD itself*

HUVECs treated by CLD or CLD-1Cl or CLD-3Cl at 10⁻¹¹ M (concentration of CLD in drinking water), 10⁻⁹ or 5.10⁻⁸ M (plasmatic concentration of exposed humans) for 24 hours

^{*}Two dechlorinated chlordecone derivatives formed by in situ chemical reduction are devoid of genotoxicity and mutagenicity and have lower proangiogenic properties compared to the parent compound.

Legeay S et al., Environ Sci Pollut Res Int. 2017

Hypothesis / Objectives

 Have CLD-1Cl and CLD-3Cl similar lower cytotoxicity and proangiogenic properties than CLD itself in vivo?

- The present study aims at:
 - exploring the angiogenic properties of the two CLD derivatives on a prostate cancer model in vivo
 - comparing the serum levels of exposure of CLD and each derivative, 24h post intake

M&M

- 1.5 x 10⁶ cancerous human prostate (PC3) cells
- 38 nude athymic mice
- Animals were exposed to the pesticide or its derivatives at two doses: 33 μg/kg (body weight) (n=17), or 1.7 μg/kg (n=15), or olive oil (control, n=6), by daily gavage for 7 weeks.

Nude mice treated *per os* by CLD or CLD-1Cl or CLD-3Cl at 1.7 μg/kg (to reflect human exposure), or 33 μg/kg (high exposure in humans) for 8 weeks

Results (1)

No effect of the metabolites on tumor growth vs control

Results (2)

- Immunostaining of tumor endothelial cells (green)
- Nucleus (blue)

Results (2bis)

- Immunostaining of tumor endothelial cells (green)
- Nucleus (blue)

Results (3)

- Measurement of CLD, CLD-1Cl and CLD-3Cl in plasma 24h post dose
- LC-MS/MS method*

	Serum concentration (M)	
	33 μg/kg	1.7 μg/kg
CLD	$2.7.10^{-7} \pm 1.6.10^{-8}$	$1.1.10^{-8} \pm 4.0.10^{-9}$
CLD-1Cl	$4.5.10^{-8} \pm 4.0.10^{-9}$	5.2.10 ⁻⁹ ± 1.1.10 ⁻⁹
CLD-3Cl	$6.2.10^{-9} \pm 1.2.10^{-9}$	< 8.0.10 ⁻¹⁰

Serum concentrations of CLD-1Cl and CLD-3Cl are lower than CLD concentrations

→ Different behavior in the organism

^{*}Bichon E et al.. Ultra-trace quantification method for chlordecone in human fluids and tissues. J Chromatogr A. 2015

Conclusion

- CLD favors angiogenesis in both in vivo and in vitro models
- CLD derivatives obtained by ISCR have a decreased proangiogenic effect compared to CLD in vitro and in vivo
- Exposure to the derivatives in mice serum is lower than exposure to CLD
- ISCR is a promising process for the remediation of soils contaminated by this pesticide
- Further studies are required to confirm these results in another cohort of mice

Contributors

• P-A. BILLAT angers

S. LEGEAY

P. LEGRAS

S. FAURE

C. MOUVET

S. BRISTEAU

• E. BICHON

I. GUIFFARD

Sante et alimentation au cœur de la vie

J-P. ANTIGNAC